保

NAVAL POSTGRADUATE SCHOOL Monterey, California

E566025

THESIS

A COMPUTER MODEL INVESTIGATION OE A
HALE SQUARE LOG-PERIODIC ARRAY
by
Mustafa Erdeviren

December 1987

Thesis Advisor
Richard W. Adler

Approved for public release; distribution is unlimited.

Prepared for:
Naval Ocean Systems Center
San Diego, CA 92152

NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93943

Rear Admiral R. C. Austin
K. T. Marshall
Superintendent
Acting Provost

This thesis prepared in conjunction with research sponsored in part by Naval Ocean Systems Center.

Reproduction of all or part of this report is authorized.

UNCLASSIFIED		10 Restrictive Markings			
3. SECURITY C.ASSIFICATION AUTHORITY		3 Distribution/AVAILABILITY OF REPORT Approved for public release; distribution is unlimited			
OECLASSIIICATION/ DOWNGRADING SCHED					
PERFORMING ORGANIZATION REPORT NUMBER(S)NPS-62-88-008		5 MONITORING ORGANIZATION REPORT NUMBER(S)			
name of performing organization aval Postgraduate School	6b OFFICE SYMBOL (If apolicable) 62	7a NAME OF MONITORING ORGANIZATION Naval Postgraduate School			
ADORESS (City, State, and ZIP Code) onterey, California 93943-5000		7b. ADDRESS (City, State, and ZIP Code) Monterey, California 93943-5000			
NAME OF FUNDING/ SPONSCRING organization aval Ocean Systems Cente	80 OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER N6227186WR60125			
- ADDRESS (City, State, and ZIP Code)		10 SOURCE OF funding numbers			
San Diego, CA 92152		PROGRAM ELEMENT NO	PROJECT NO	$\begin{array}{\|c} \text { TASK } \\ \text { NO } \end{array}$	$\begin{aligned} & \text { WORK UNIT } \\ & \text { ACCESSION NO } \end{aligned}$

IiTLE (Include security Classtication)
A COMPUTER MODEL INVESTIGATION OF A HALF SQUARE LOG-PERIODIC ARRAY

PERSONAL AUTHOR(S)
ERDEVIREN, Mustafa

TYPE OF REPORT Master's Thesis	13b TIME COVERED =20M \qquad TO	14 DATE OF REPORT (Year, Month, Day) December 1987	$\begin{gathered} 15 \text { PAGE COUNT } \\ 167 \end{gathered}$

SUPPLEMENTARV NOTATION

Cosati codes			:8 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Half Square Log-Periodic Array, Numerical Electromagnetic Code (NEC)
FIELD	GROUP	SUB.GROLP	

ABSTRACT (Continue on reverse if necessary and identify by block number)
This thesis investigates the potential of a half square log-periodic array for use by the military over the frequency range of 2 to 30 MHz using a computer simulation technique by numerical methods. Using the Numerical Electromagnetics Code (NEC), a selected model was run in free space and over perfect ground to obtain data for radiation patterns and element currents on the array. After the evaluation of the NEC data, the results of the investigation show that half square log-periodic array with dual feed and switched transmission line has characteristics of a successful log-periodic structure with a unidirectional radiation pattern, over the design frequency range of 2 to 30 MHz , showing promise for military applications.

DISTRIBUTIONIAVAILABILITY OF ABSTRACT U UNCLASSIFIEOUNLIMITED \square SAME AS RPT	\square Dtic users	21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED	
a NAME OF RESPONSIBLE INDIVIDUAL R. W. Adler		22b TELEPHONE (Include Area COde) $408-646-2352$	$\begin{aligned} & \text {-2c. OfFICE SYMBOL } \\ & 62 \mathrm{Ab} \end{aligned}$

Approved for public release; distribution is unlimited.

> A Computer Model Investigation of A
> Half Square Log-Periodic Array
by

Mustafa Frdeviren
Captain, Turkish Army
B.S., Naval Postgraduate School, 1987

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGI.NEERING
from the

NAVAL POSTGRADUATE SCHOOL
December 1987

Abstract

This thesis investigates the potential of a half square log-periodic array for use by the military over the frequency range of 2 to 30 MHz using a computer simulation technique by numerical methods. I sing the Numerical Electromagnetics Code (NEC), a selected model was run in free space and over perfect ground to obtain data for radiation patterns and element currents on the array. After the evaluation of the $\mathcal{X E C}$ data, the results of the investigation show that half square log-periodic array with dual feed and switched transmission line has characteristics of a successful log-periodic structure with a unidirectional radiation pattern, over the design frequency range of 2 to 30 MHz , showing promise for military applications.

TABLE OF CONTENTS

I. INTRODLCTION 11
A. THE EMERGENCE OF A HALF SQUARE LOG- PERIODIC ARRAY 11
B. BROADBAND ANTENNAS 12
C. THE FREQUENCY INDEPENDENT CONCEPT AND LOG-PERIODIC A.)TE.NへAS 12
D. GENERAL CHARACTERISTICS OF SLCCESSFLL LOG-PERIODIC A.TTENNAS 16
II. NU'MERICAL CONSIDERATIONS AND PROCEDURE 18
A. SELECTED METHOD OF INVESTIGATION 18
B. NU.MERICAL ELECTROMAG.NETICS CODE (NEC) 19
C. DEVELOPMENT OF THE COMPUTER MODEL 19
D. FAR-FIELD RADIATION PATTERNS 21
III. EXPERIMENTAL RESLLTS 24
A. RADIATIO. PATTERNS 24
B. AMPLITLDE AND PHASE DISTRIBUTIONS OF ELEMENT CLRRENTS 25
IV. CONCLUSIONS AND RECOMMENDATIONS 30
A. CONCLLSIONS 30
B. RECOM.ME.NDATIO.NS 31
APPENDIX A: NEC DATA FILE FOR FREE SPACE 32
APPE.NIX B: NEC DATA FILE FOR PERFECT GROUND 35
APPENDIX C: RADIATION PATTERNS IN FREE SPACE 38
APPENDIX D: RADIATION PATTER.NS OVER PERFECT GROL.D 72
APPENDIX E: AMPLITUDE AND PHASE PLOTS IN FREE SPACE 88
APPENDIX F: AMPLITUDE AN.N PHASE PLOTS OVER PERFECT GROUND 122
LIST OF REFERENCES 156
INITIAL DISTRIBUTION LIST 157

LIST OF TABLES

1. HLPA DESIGN PARAMETERS 23
2. NUMERICAL RESULTS IN FREE SPACE 27
3. NUMERICAL RESLLTS OVER PERFECT GROUND 29

LIST OF FIGURES

1.1 Log-periodic toothed structure (self complementary) 14
1.2 Log-periodic dipole construction 15
2.1 Half Square Log-Periodic Array 22
3.1 Horizontal Pattern, Frequency: 9.60 MHz 26
3.2 Horizontal Pattern, Frequency: 13.61 MHz 28
C. 1 Horizontal Pattern, Frequency: 2 MHz 38
C. 2 Horizontal Pattern, Frequency: 2.38 MHz 39
C. 3 Horizontal Pattern. Frequency: 2.83 MHz 40
C. 4 Horizontal Pattern, Frequency: 3.37 MHz 41
C. 5 Horizontal Pattern. Frequency: 4.01 MHz 42
C. 6 Horizontal Pattern, Frequency: 4.78 MHz 43
C. 7 Horizontal Pattern, Frequency: 5.69 MHz 44
C. 3 Horizontal Pattern, Frequency: 6.77 MHz 45
C. 9 Horizontal Pattern, Frequency: 8.06 MHz 46
C. 10 Horizontal Pattern, Frequency: 11.43 MHz 47
C. 11 Horizontal Pattern. Frequency: 13.61 MHz 48
C. 12 Horizontal Pattern, Frequency: 16.20 MHz 49
C. 13 Horizontal Pattern, Frequency: 19.29 MHz 50
C. 14 Horizontal Pattern, Frequency: 22.96 MHz 51
C. 15 Horizontal Pattern, Frequency: 27.34 MHz 52
C. 16 Horizontal Pattern, Frequency: 30.0 MHz 53
C. 17 Horizontal Pattern, Frequency: 2.15 MHz 54
C. 18 Horizontal Pattern, Frequency: 2.60 MHz 55
C. 19 Horizontal Pattern, Frequency: 3.0 MHz 56
C. 20 Horizontal Pattern, Frequency: 3.7 MHz 57
C. 21 Horizontal Pattern, Frequency: 5.0 MHz 58
C. 22 Horizontal Pattern, Frequency: 5.95 MHz 59
C. 23 Horizontal Pattern, Frequency: 6.5 MHz 60
C. 24 Horizontal Pattern, Frequency: 7.0 MHz 61
C. 25 Horizontal Pattern, Freg iency: 7.5 MHz 62
C. 26 Horizontal Pattern, Frequency: 8.25 MHz 63
C. 27 Horizontal Pattern, Frequency: 8.5 MHz 64
C. 28 Horizontal Pattern, Frequency: 8.75 MHz 65
C. 29 Horizontal Pattern, Frequency: 9.0 MHz 66
C. 30 Horizontal Pattern, Frequency: 9.25 MHz 67
C. 31 Horizontal Pattern, Frequency: 9.5 MHz 68
C. 32 Horizontal Pattern, Frequency: 9.75 MHz 69
C. 33 Horizontal Pattern, Frequency: 10.0 MHz 70
C. 34 Horizontal Pattern, Frequency: 10.5 MHz 71
D. 1 Horizontal Pattern, Frequency: 2 MHz 72
D. 2 Horizontal Pattern, Frequency: 2.38 MHz 73
D. 3 Horizontal Pattern, Frequency: 2.83 MHz 74
D. 4 Horizontal Pattern, Frequency: 3.37 MHz 75
D. 5 Horizontal Pattern, Frequency: 4.07 MHz 76
D. 6 Horizontal Pattern. Frequency: 4.78 MHz 77
D. 7 Horizontal Pattern, Frequency: 5.69 MHz 78
D. 8 Horizontal Pattern, Frequency: 6.77 MHz 79
D. 9 Horizontal Pattern, Frequency: 8.06 MHz 80
D. 10 Horizontal Pattern, Frequency: 9.60 MHz 81
D. 11 Horizontal Pattern, Frequency: 11.43 MHz 82
D. 12 Horizontal Pattern, Frequency: 16.20 MHz 83
D. 13 Horizontal Pattern, Frequency: 19.29 MHz 84
D. 14 Horizontal Pattern. Frequency: 22.96 MHz 85
D. 15 Horizontal Pattern, Frequency: 27.34 MHz 86
D. 16 Horizontal Pattern, Frequency: 30.0 MHz 87
E. 1 Current Amplitude, Frequency : 2 MHz 88
E. 2 Current Phase, Frequency: 2 MHz 89
E. 3 Current Amplitude, Frequency : 2.38 MHz 90
E. 4 Current Phase, Frequency : 2.38 MHz 91
I: 5 Current Amplitude, Frequency : 2.83 MHz 92
I. 6 Current Phase, Frequency : 2.83 Milz 93
E. 7 Current Amplitude, Frequency : 3.37 MHz 94
E. 8 Current Phase, Frequency : 3.37 MH /. 95
E. 9 Current Amplitude, Frequency : 4.01 MHz 96
E. 10 Current Phase, Frequency : 4.01 97
E. 11 Current Amplitude, Frequency : 4.78 MHz 98
E. 12 Current Phase, Frequency : 4.78 MHz 99
E. 13 Current Amplitude, Frequency : 5.69 MHz 100
E. 14 Current Phase, Frequency : 5.69 MHz 101
E. 15 Current Amplitude, Frequency : 6.77 MHz 102
E. 16 Current Phase, Frequency : 6.77 MHz 103
E. 17 Current Amplitude, Frequency : 8.06 MHz 104
E. 18 Current Phase, Frequency: 8.06 MHz 105
E. 19 Current Amplitude, Frequency : 9.6 MHz 106
E. 20 Current Phase, Frequency: 9.6 MHz 107
E. 21 Current Amplitude, Frequency : 11.43 MHz 108
E. 22 Current Phase, Frequency : 11.43 MHz 109
E. 23 Current Amplitude, Frequency: 13.61 MHz 110
E. 24 Current Phase, Frequency : 13.61 MHz 111
E. 25 Current Amplitude, Frequency : 16.2 MHz 112
E. 26 Current Phase, Frequency : 16.2 MHz 113
E. 27 Current Amplitude, Frequency : 19.29 MHz 114
E. 23 Current Phase, Frequency : 19.29 MHz 115
E. 29 Current Amplitude, Frequency : 22.96 MHz 116
E. 30 Current Phase, Frequency : 22.96 MHz 117
E. 31 Current Amplitude, Frequency : 27.34 MHz 118
E. 32 Current Phase, Frequency : 27.34 MHz 119
E. 33 Current Amplitude, Frequency : 30.0 MHz 120
E. 34 Current Phase, Frequency : 30.0 MHz 121
F. 1 Current Amplitude, Frequency : 2 MHz 122
F. 2 Current Phase, Frequency : 2 MHz 123
F. 3 Current Amplitude, Frequency : 2.38 MHz 124
F. 4 Current Phase, Frequency : 2.38 MHz 125
F. 5 Current Amplitude, Frequency : 2.83 MHz 126
F. 6 Current Phase, Frequency : 2.83 MHz 127
F. 7 Current Amplitude, Frequency: 3.37 MHz 128
F. 8 Current Phase, Frequency : 3.37 MHz 129
F. 9 Current Amplitude, Frequency : 4.01 MHz 130
F. 10 Current Phase, Frequency : 4.01 131
F. 11 Current Amplitude, Frequency : 4.78 MHz 132
F. 12 Current Phase, Frequency : 4.78 MHz 133
F. 13 Current Amplitude, Frequency : 5.69 MHz 134
F. 14 Current Phase, Frequency : 5.69 MHz 135
F. 15 Current Amplitude, Frequency : 6.77 MHz 136
F. 16 Current Phase, Frequency : 6.77 MHz 137
F. 17 Current Amplitude, Frequency : 8.06 MHz 138
F. 18 Current Phase, Frequency : 8.06 MHz 139
F. 19 Current Amplitude, Frequency : 9.6 MHz 140
F. 20 Current Phase, Frequency: 9.6 MHz 141
F. 21 Current Amplitude, Frequency: 11.43 MHz 142
F. 22 Current Phase, Frequency : 11.43 MHz 143
F. 23 Current Amplitude, Frequency: 13.61 MHz 144
F. 24 Current Phase, Frequency : 13.61 MHz 145
F. 25 Current Amplitude, Frequency : 16.2 MHz 146
F. 26 Current Phase. Frequency: 16.2 MHz 147
F. 27 Current Amplitude, Frequency : 19.29 MHz 148
F. 28 Current Phase, Frequency : 19.29 MHz 149
F. 29 Current Amplitude, Frequency : 22.96 MHz 150
F. 30 Current Phase, Frequency : 22.96 MHz 151
F. 31 Current Amplitude, Frequency : 27.34 MHz 152
F. 32 Current Phase, Frequency : 27.34 MHz 153
F. 33 Current Amplitude, Frequency : 30.0 MHz 154
F. 34 Current Phase, Frequency : 30.0 MHz 155

I. INTRODUCTION

A. THE EMERGENCE OF A HALF SQUARE LOG-PERIODIC ARRAY

In order to meet military communications needs, today's military uses a wide variety of communication systems. Military high frequency (HF) communication systems provide different kinds of short, medium, and long range communications capability. The users of military HF communications vary from special teams to high level headquarters. These different requirements necessitate finding a solution to mect all these needs. In this respect, major important design factors for a military HF antenna are a frequency range of 2 to 30 MHz and practicability; that is the ease of deployment of the antenna under the combat conditions.

To meet these requirements, D.V. Campbell and his associates at Fort Monmouth, New Jersey designed a lightweight wire array consisting of half square elements arranged in a log-periodic configuration with dual feed. A prototype of the half square log-periodic antenna was constructed at Fort Monmouth for testing at a frequency range of 8 to 30 MHz . Test results gave an impedance behavior common to a log-periodic antenna thus warranting further investigation. [Ref. 1]
J.R. Johnsen, in his thesis research [Ref. 2] investigated near magnetic fields of a uniformly periodic half square array with dual feed in order to be able to determine the potential of the structure as a half square log-periodic array (HLPA) for use by the military. Taking 2 to 30 MHz as the design frequency range for his model, Johnsen chose 8 MHz as mid-frequency resonance (which is 2 octaves above the lowest and almost 2 octaves below the highest frequency). He modeled a uniformly periodic half square array of 10 elements with double feed. Using the Numerical Electromagnetics Code ($\uparrow E C$) [Ref. 3] he simulated the model on the computer for free space and perfect ground environments with in-phase and anti-phase feed options to obtain data for near magnetic fields and radiation patterns. After collecting the data for near magnetic fields, Johnsen used these data to obtain the $k-\beta$ relationship of the array. By inspecting the $k-\beta$ diagrams he tried to identify the frequency regions where backward radiation occurred. Since backward radiation is an important characteristic of successful log-periodic antennas, he ran the model on the computer for the frequencies for which backward radiation on the $k-\beta$ diagram was observed and obtained radiation
patterns. The results of his research led to the conclusion that the potential of designing a successful half square \log-periodic antenna with dual feed is good.

The purpose of this thesis is to model a half square log-periodic antenna (HLPA) for different scaling and spacing factors and by using a computer simulation technique to investigate the characteristics of the antenna in order to be able to determine its applicability as a broadband military HF antenna.

B. BROADBAND ANTENNAS

In many applications an antenna must operate effectively over a wide range of frequencies. Generally an antenna with wide bandwidth is referred to as a broadband antenna. In this sense the term " broadband " is a relative measure of bandwidth and varies with the circumstances [Ref. 4]. In practice, a broadband antenna is considered tc be the one which retains certain desired or specified radiation pattern, polarization, or impedance characteristics over more than an octave.

C. THE FREQUENCY INDEPENDENT CONCEPT AND LOG-PERIODIC ANTENNAS

The research work which led to the development of antennas whose performance is almost independent of frequency was carried out mainly at the University of Illinois in the period from 1955 to 1958. The work, along with several other projects was sponsored by the Air Force in order to relieve the problems associated with the increasing numbers of different electromagnetic systems and equipment being carried on high-speed military aircraft. So many different antennas were required that finding locations for the antennas was a serious problem. It was recognized that the problem would be relieved if a given antenna could serve several systems and frequencies, and consequently the Air Force sponsored a research program on the general subject of broadband antennas.

In connection with the sponsored research work on broadband antennas, Professor V.H. Rumsey, then antenna laboratory director at the University of Illinois rcalized that the features which introduce frequency dependence are the characteristic lengths of the structure. Antenna performance is generally a function of length wavelength. On the other hand, by the principle of modeling or scaling, to ensure that a given type of structu:re has the same performance at different f:equencies, it is only necessary to scale the size of the structure in the ratio of frequencies. Thus, Rumsey concluded that the structural feature required for frequency independent
operation is the absence of characteristic lengths. With this feature a structure could be self-scaling. But what kind of physical structure is there that has no characteristic lengths ? Rumsey's answer was that the structure should be completely described by angles. Thus he put forward the "angle concept," which said, essentially, that a structure whose shape is defined by angles alone, with no characteristic length, should be a frequency-independent structure.

In looking for structures that can be defined by angles alone, the first that come to mind are the infinite biconical antenna and the infinite bifin (bow-tie) antenna. However, practical versions of these structures are obviously finite in size, and although these structures do have comparatively broadband tendencies, the truncation to a finite size introduces a characteristic length and this destroys the frequencyindependent behavior. [Ref. 5]

Next, R.H. DuHamel (then a research assistant professor at the University of Illinois) continued with the desien of a broadband antenna with linear polarization. Hie realized that the bifin or bow-tie antenna could be constructed in a self complementary fashion and of course that it radiates linear polarization. But he also realized that the bandwidth of the bifin was limited because of the truncation, or more particularly, because the currents were not negligible at the point of truncation. Consequently, the problem was to somehow alter the bow-tie structure in such a way a. to cause the currents to fall off with distance from the feed point more rapidly than a ual. His method of accomplishing this was to introduce discontinuities, for example, tceth, into the fins in an attempt to increase the radiation and speed up the decay of c !rrent. But the question was," llow should the teeth be designed?" DuHamel decided t.) adhere to Rumsey's angle concept and to cut the teeth along circular arcs and let ti.e length of the arcs be determined by an angle (see Figure 1.1).

However, this did not fix the tooth spacing, since the latter could not be specified $r \because$ angles alone. In trying to solve the spacing problem, DuHamel noticed that on the equiangular structure (a successful structure), along a line drawn from the center outward, the spacings from one conductor to the next were in a constant ratio. He therefore considered spacing the teeth in the bifin such that the spacings were in a constant ratio. He accomplished this by choosing the radii of the circular arcs forming the corresponding parts of the successive teeth such that they were in a constant ratio, $R_{n+1}: R_{n}=\tau$. He recognize.! that the structure would not necessarily be frequency independent but that, on the other hand, the performance on an infinite structure

Figure 1.1 Log-periodic toothed structure (self complementary).
would be identical at a discrete number of frequencies. In fact, if the structure has a performance at frequency f_{1}, the performance should be identical at frequencies τf_{1}, $\tau^{2} f_{1}, \tau^{3} f_{1}$, and so on as long as the structure is modeled accurately at the feed point and is effectively infinite in size (i.e., current zero at the point of truncation). Again τ is the common ratio of distances. The frequencies at which the performance should be identical are related by the equation $f_{n}=f_{n+1} \tau$, or $\log f_{n+1}=\log f_{n}+\log (1 / \tau)$. Inspection of this latter equation shows that the performance is a periodic function of the logarithm of the frequency (i.e., the frequencies at which the performance is the same are spaced equally when plotted on \log paper). Thus, these types of structures were subsequently named log-periodic antennas.

After DuHamel's findings many structures of this type were built and tested. Some were less successful than others.

The next major step came with Isbell's invention of the log-periodic dipole array. His work was motivated by the desire to develop broadband arrays of more
conventional construction. Thus he decided to build and test an antenna array constructed of conventional wirelike elements; however, the length of the elements were determined by an angle α as before, and the spacings were such as to give the logperiodic type of behavior; that is successive distances between the apex and the elements were in a constant ratio, $R_{n+1} / R_{n}=\tau$ (Figure 1.2).

Figure 1.2 Log-periodic dipole construction.
The experiments with the structure demonstrated that in a certain range of values for τ and α, the structure was indeed a broadband log-periodic structure with a unidirectional pattern. Isbell also demonstrated experimentally that most of the radiation was coming from those dipole elements which were in the vicinity of a half wavelength long and that the currents and voltages at the large end of the structure were negligible within the operating band of frequencies. Finally, it was shown once again that the operating band of frequencies was bounded on the high side by frequencies corresponding to the size of the smallest elements and on the low side by the frequencies at which the largest dipole element is about a half wavelength long.

A careful and extremely valuable analysis of the log-periodic dipole array was made by R.L. Carrel in a doctoral dissertation. The physical nakeup of the logperiodic array is such that an analysis of it may be based on more or less conventional theory of linear antennas and transmission lines. The main difficulty is the inherent complication. Carrel's analysis consisted of breaking the overall problem into parts, each of which was programmed for the digital computer. First, making the assumption that the element currents were sinusoidally distributed, he computed in the conventional way the mutual impedances between the dipole elements and the selfimpedance of each element. In the second part of the problem, Carrel focused his attention on the parallel-wire transmission line, fed at one end shunt-loaded with impedances corresponding to the dipole antenna elements having sizes and spacings characteristic of log-periodic arrays; of course, the impedance values came from the first part of his computer program. He carried out (on a digital computer) a circuit analysis to find the input impedance, voltages, and the currents on the loaded transmission line, together with the base (i.e., input) currents at each antenna element. As the last part of the problem, with the specific values for the magnitude and phase of the currents in the antenna elements, he calculated the radiation patterns. Having ieveloped a systematic computer program, Carrel completed calculations on more than 100 different log-periodic dipole designs. He then compared the results of several of these with corresponding experimental models. The measurements included not only impedances and radiation patterns but also the voltage and current distributions in the structure. The agreement between the computer output and the experimental results was excellent. Carrel's work provided a set of design curves which show how to adjust the dimensions of a structure in order to meet specified design objectives.

D. GENERAL CHARACTERISTICS OF SUCCESSFUL LOG-PERIODIC ANTENNAS

From the results of successful log-periodic antennas, some general characteristics can be cited as follows :

* Log-periodic antennas have a special kind of repetitiveness in their physical structure which results in a repetitive behavior of the electrical characteristics. The impedance is a logarithmically periodic function of frequency. That is, if a plot is made of the input impedance as a function of logarithm of the frequency, the variation will be periodic. Radiation patterns vary in the same manner, along with such parameters as the directive gain, beamwidth, and sidelobe level. [Ref. 6]
* Excitation of the antenna or array is from the high frequency or small end.
* Backfire radiation (in the case of unidirectional radiators) occurs, so that the antenna "fires" through the small part of the structure, with the radiation in the forward direction being zero or at least very small. For bidirectional antennas the backfire requirement is replaced by a requirement for broadside radiation. In any case the radiation in the forward direction along the surface of the antenna (which theoretically extends to infinity) must be zero or very small.
* A transmission region is formed by the inactive portion of the antenna between the feed point and the active region. This transmission line region should have the proper characteristic impedance and negligible radiation.
* An active region exists from which antenna radiates strongly because of a proper combination of current magnitudes and phasings. The position and phasing of these radiating currents produce a very small radiation field along the surface of the antenna or array in the forward direction, and a maximum radiation field in the backward direction.
* An inactive or reflection region exists beyond the active region. All successful frequency independent antennas must exhibit a rapid decay of current within and beyond the active region, so that operation will not be affected by truncation of the structure. A major cause of the rapid current decay is, of course, the large radiation of energy from the active region. [Ref. 7]

II. NUMERICAL CONSIDERATIONS AND PROCEDURE

A. SELECTED METHOD OF INVESTIGATION

The method of investigation of the Half Square Log-Periodic Array was planned in two steps. The first step was to design several computer models of the Half Square Log-Periodic Array with different scaling and spacing factors and to compare the performances of these models in terms of the antenna parameters. such as radiation patterns, half-power beamwidth, front-to-back ratio, and input impedance, and depending on the results, to determine the most promising model. The second step was to run the selected model on the computer by using NEC to get data both for radiation patterns and near magnetic ficlds. Exanination of the radiation patterns is the most effective way to see the performance of log-periodic antennas. The purpose of getting near magnetic fields data in addition to radiation fields data was for an attempt to obtain the $\mathrm{k}-\beta$ diagrams of the half square log-periodic array by using near magnetic lields data and to see the relation between the radiation patterns and the $\mathrm{k}-\beta$ diagram. The importance of the $k-\beta$ diagram comes from the fact that in uniformly periodic arrays it is possible to identify the frequency regions where backward radiation occurs by examining the $\mathrm{k}-\beta$ diagram. A uniformly periodic array is one in which all the elements, dimensions and, spacing between the elements are the same. Since backward radiation is an important characteristic of successful log-periodic antennas, a $k-\beta$ diagram is a very useful tool in determining the potential of a candidate log-periodic structure by analyzing the k - β diagram of its uniformly periodic counterpart. For the los-periodic case it is not easy to obtain the $\mathrm{k}-\beta$ diagram. The $\mathrm{k}-\beta$ diagram approach uscd in the analysis of the uniformly periodic structures is based on the analysis of infinite length structures. Since practical structures are of finite length, their current distribution usually will be different than that of the infinite length structures and some deriations in behavior may occur even in uniformly periodic structures. For example, the boundary lines between the various length regions are not sharply defined. Effective radiation may occur from a finite structure at frequencies where the phase constant lies within the slow-wave region [Ref. 8]. Secondly, in the uniformly periodic case, d is constant and k is the controlled variable in obtaining the $\mathrm{k}-\beta$ diagram. For the \log-periodic case, the period, d , continually increases as one moves away from the
feed with the frequency fixed. By fixing k and making d variable, a $k-\beta$ diagram for the log-periodic structure may be obtained. With this approach, it is assumed that β on the log-periodic structure is determined only by local behavior of the structure [Ref. 9]. Also, since a log-periodic structure is not uniform, at a given frequency different space harmonic phase constants are found for each cell along the structure. For these reasons different approaches, other than the k- β diagram approach, are generally used in the analysis of log-periodic structures. One of the methods used in this thesis is evaluation of amplitude and phase plots of element currents to determine regions which create backfire radiation and comparison of this information with radiation patterns.

For accuracy, a double precision version of the Numerical Electromagnetics Code (NEC) was used throughout the simulation process.

B. NUMERICAL ELECTROMAGNETICS CODE (NEC)

Half square log-periodic arrays used in this thesis were modeled on the IBM system 370 main-frame computer by using the Numerical Electromagnetics Code (․EC), version three. NEC has been developed at the Lawrence Livermore Laboratory, Livermore, California, under the sponsorship of the Naval Occan Systems Center and The Air Force Weapons Laboratory.

It is a user oriented computer code for analyzing the electromagnetic response of antennas and other metal structures by evaluating the numerical solutions of integral equations for currents induced on the structure by incident fields or sources.

The code can handle models with nonradiating networks and transmission lines connecting parts of the structure, imperfect or perfect conductors, and lumped element :oading. Structures may also be modeled in free space or over a ground plane that may be either a perfect or imperfect conducter.

Structures may be excited cither by voltage sources on the structure or by an incident plane wave which may be linearly or elliptically polarized. NEC outputs may include currents and charges, radiated fields and near electric or magnetic fields. For better accuracy calculations double precision versions are also available to the user.

C. DEVELOPMENT OF THE COMPUTER MODEL

The major consideration in selection of computer model was the tradeoff between antenna performance and deployment capability. As the number of the elements in the array increases, the performance of the antenna also increases, but, construction of the antenna will require more time and manpower, which are crucial factors under battle
conditions. Therefore a computer model must be chosen which is operationally practical.

Because the performance of the antenna can be determined from its far field radiation patterns, originally an array of 10 elements was modeled and run on the computer for radiation pattern evaluation. Far field radiation patterns for a 10 -element half square log-periodic array did not show good performance. Following this, a 13-element array was modeled. The performance was better than that of the 10-element array, but was not good enough.

After observing the results of the 13 -element half square log-periodic array the final model was designed. At the start of the design the only parameter available was the required operational frequency range of 2 to 30 MHz . Since the radiating elements are to be approximately half wavelength long at the operating frequency, the length of the longest element was 75 M . Considering that the length of the array should be around one wavelength long at the lowest frequency, the distance from the apex to the longest element was 150 M . From these parameters the apex angle $\boldsymbol{\alpha}$ was found as $2 S .14^{\circ}$ from $\tan \alpha_{\prime}^{\prime} 2=L_{n} / 2 R_{n}$. Here L_{n} is the length of the longest element and R_{n} is the distance from apex to the longest element. The selection of the scale factor, τ, was somewhat arbitrary. Since, higher values of τ require more elements in the array Carrel's design curves for dipoles were examined (although it is not known whether his information is applicable to the half square or not) and a value of 0.84 was chosen. Using this scale factor and the length of the longest element, lengths of other elements were determined. Seventeen elements were required to cover the $2-30 \mathrm{MHz}$ frequency range. Figure 2.1 shows the structural geometry of the half square log-periodic array. For ease of computer modeling, the structure was placed on the $\mathrm{X}-\mathrm{Y}$ plane, the shortest element being at the origin and the array extending along the X axis. The lengths of the elements and their distances from the origin along with their corresponding resonant frequencies are shown in Table 1.

Based on Johnsen's findings for the uniformly periodic array, an implicit transmission line of 300 Ohms was used in the NEC model. An implicit transmission line model is one in which the currents on the wire segments which are connected to the ends of the transmission line are modified by using ideal, non-radiating transmission line equations. This neglects transmission line attenuation due to radiation, conductor and dielectric losses and assumes balanced currents. Johnsen showed that the half square log-periodic array is a balanced structure and NEC a!lows
transmission lines on balanced structures to be modeled by implicit transmission line equations. The use of implicit transmission line equations allows the treatment of transmission lines as two port networks by defining characteristic impedance and length and calculating response. Implicit transmission lines reduce the number of wire segments in a model, thus the size of the matrix necessary to evaluate currents is reduced.

Since the half square log-periodic array is constructed with half square elements and each element consists of two quarter square elements connected together by an insulated connector on the horizontal wire, to make the model precise to the highest degree possible the lengths of the insulators between the elements were scaled by scale factor. The insulators were modeled as open circuits. In order to see the effect of the scaling on element wire thickness, model was run for scaled wire diameters but no significant variation on performance was observed. Both "in-phase" and "anti-phase" excitation were tested to establish the uscfulness of each. In-phase excitation is where both sets of corners on a half square element are fed with the same phase. In antiphase excitation, the phase difference between corners is 180° Anti-phase excitation was chosen because the desired unidirectional azimuth radiation pattern is produced. With in-phase excitation, radiation from currents on the horizontal portion of the elements cancel producing azimuthal nulls on-axis, which are undesired.

Data sets used for the computer simulation are listed in Appendix A and Appendix B.

D. FAR-FIELD RADIATION PATTERNS

Since there is not a well established methodology for the analysis of log-periodic antennas, mostly the analysis of the performance is experimental. In this respect radiation patterns are one of the key parameters for evaluating the performance of log. periodic antennas. For this research, radiation patterns were calculated at the resonant, and also in-between frequencies in free space and on perfect ground environments with in-phase and anti-phase excitation options using . .EC.

Figure 2.1 Half Square Log-Periodic Array.

TABLE 1
HLPA DESIGN PARAMETERS

Element No.	Erequency (MHz)	Distance (m)	Length (m)
1	32.55	0.0	4.61
2	27.34	1.76	5.49
3	22.96	3.85	6.53
4	19.29	6.33	7.77
5	16.20	9.29	9.25
6	13.61	12.82	11.02
7	11.43	17.02	13.12
8	9.60	22.02	15.62
9	8.06	27.96	18.59
10	6.77	35.05	22.13
11	5.69	43.48	26.34
12	4.78	53.52	31.37
13	4.01	65.46	37.34
14	3.37	79.68	44.45
15	2.83	96.62	52.92
16	2.38	116.78	63.00
17	2.00	140.78	75.00

III. EXPERIMENTAL RESULTS

The selected model was first run with in-phase and anti-phase excitation with a switched transmission line in free space, then over perfect ground. Switching is the transposition of the transmission line between adjacent elements as seen in Figure 1.2 to generate a 180° phase reversal. The data collected included radiation patterns and nagnitude and phase plots of near magnetic fields.

A. RADIATION PATTERNS

Free space radiation patterns with anti-phase excitation showed the expected backfire radiation. (Backfire radiation is directed toward the point of excitation, a trait which appears to be inherent in most of the successful unidirectional log-periodic aitennas, and is believed to be the result of a space wave traveling along the structure in the direction opposite to the phase progression of currents in the feed line.) The backward-traveling wave is due to the existence of backward space harmonics in the spectrum of the periodic structure. The periodic structure should be such as to p:oduce only waves which are quite slow at the frequencies where radiation is not i.tended. At frequencies where radiation is intended, one or more of the spaceh..rmonic waves should be "fast" or almost fast. Thus, for the log-periodic structure, a feeder wave progresses toward the active (radiating) region under slow wave conditions. According to this theory, the dominant space harmonic in the active region propagates in: the backward direction \mid Ref. 8 :. Between 2 and 5 MHz , although the main radiation is in the backfire direction, the front-to-back ratio is lower than that of for the rest of ti.e frequency range. There seems to be one major reason for this, namely "truncation e fect". If the structure were of infinite type the properties would repeat periodically and there would not be any performance variation. Near the low-frequency cutoff of 2 Miliz, a sizable reflection of the fundamental wave (end effect) is produced by the rear tuncation. This reflected wave then travels back along the structure in the opposite (..rection, passing through the active region a second time where it is partially radiated. The resulting radiation pattern from this second pass is a reduced mirror image of the main pattern from the first pass of the fundamental wave [Ref. 10]. As the frequency is increased the electrical propertics of the truncated structure converge to characteristic values. So for our case 5 Mhz . presents a low-frequency limit; above this frequency
the properties display fairly small variations. Figure 3.1 shows a sample radiation pattern in free space. Appendix C includes other radiation patterns calculated in free space. Patterns show an average half power beamwidth of 56° and an average gain of 4 dB . at resonant frequencies. In Table 2 the antenna parameters, power gain, half power beamwidth, and input impedance are shown for resonant frequencies in free space.

Radiation patterns taken over perfect ground showed similar results except for higher and more stable gain and half power beamwidth values. A sample radiation pattern plotted over perfect ground is shown in Figure 3.2 and the antenna parameters, half power beamwidth, power gain, and input impedance values for resonant frequencies are shown in Table 3. Appendix D contains other radiation patterns taken over perfect ground. As can be seen from radiation patterns as the frequency increases the back lobe gets smaller and radiation in the forward direction gets stronger. This is an indication of the smooth transfer of functions of one resonant element to the next.

B. AMPLITUDE AND PHASE DISTRIBUTIONS OF ELEMENT CURRENTS

Appendix E shows amplitude and phase plots of element currents for the half square log-periodic array in free space for resonant frequencies. Appendix F shows amplitude and phase plots of element currents for resonant frequencies over perfect ground. These plots clearly show the possibility of obtaining a leading phase shift along some portion of the structure that will produce backfire radiation. On the plots, the leftmost point corresponds to the smallest element which is half-wavelength long at the highest cut-off frequency. The feed line is connected to the array at this element. The rightmost point corresponds to the longest element which is half wavelength long at lowest cut-off frequency of 2 Mhz . From the amplitude and phase plots of element currents it can be observed that small contributions from those elements close to feed point tend to cancel each other because of the a phase difference of almost 180°. Currents are strongest mainly on a few elements in front of the element which is closer in length to a half wavelength of the operating frequency. These elements form the active region of the array. For these elements, the phase shift along the structure shows a leading phase condition. The leading phase condition corresponds to a backward traveling wave and leads to directivity which is predominantly backfire. Following the element closest in length to the resonant frequency, the current amplitude falls off suddenly showing a desired end-effect. As the operating frequency is increased or decreased the active region moves along the array but radiation patterns vary only slightly.

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : $9.60 \mathrm{MHZ} ., \mathrm{TL}:-300 \mathrm{OHM}$.

Figure 3.1 Horizontal Pattern, Frequency: 9.60 MHz .

TABLE 2
NUMERICAL RESULTS
IN FREE SPACE

$\begin{gathered} \text { Erequency } \\ \left(\begin{array}{c} \mathrm{MHz}) \end{array}\right. \end{gathered}$	HPBW (degrees)	$\begin{aligned} & \text { Gain } \\ & (\mathrm{dB}) \end{aligned}$	Input impedance (real and imaginary)
2.0	68	2. 15	$236-187$
2.38	64	3.74	$215-180$
2.83	66	3.26	$256-221$
3.37	60	3.90	255-189
4.07	58	4. 08	$333-192$
4.78	64	3.66	$418-195$
5.69	58	4. 20	462-45.2
6.77	56	4. 29	46063
8.06	56	4. 40	340150
9.60	54	4. 45	214136
11.43	52	4.54	14564.3
13. 61	56	4.39	117 -22
16. 20	54	4.41	151-125
19.29	56	4.80	$337-193$
22.96	58	4.26	21938.8
27.34	54	3.65	77-102

HALF SQUARE LOG PERIODIC ARRAY,OPG.
HORIZONTAL,FREQUENCY : 13.61 MHZ ., TL : -300 OHM.

Figure 3.2 Horizontal Pattern, Frequency: 13.61 MHz .

TABLE 3
NUMERICAI, RESULTS OVER PERFECT GROIND

$\begin{gathered} \text { Erequency } \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} \text { HPBW } \\ \text { (degrees) } \end{gathered}$	$\begin{aligned} & \text { Gain } \\ & (\mathrm{dB}) \end{aligned}$	Input impedance (real and imaginary)
2.0	72	3. 35	$157-47$
2.38	66	5.31	$135-43.3$
2.83	68	5.19	$151-83$
3.37	62	5. 14	136-62
4. 01	62	5.91	160-79.1
4.78	70	6.28	$186-123$
5.69	58	5.55	$199-118$
6.77	58	5.56	239-145
8.06	58	5.69	309-143
9. 60	56	5.66	$387-62$
11.43	56	5.67	34975
13.61	56	5.67	21184
16.20	56	5.69	$137 \quad 9.7$
19. 29	56	5.91	$152-110$
22.96	60	5.21	257-193
27. 34	54	5.29	$50-37.5$

IV. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis investigated the potential of a half square log-periodic array for use by the military over the specific high frequency range of 2 to 30 MHz . Using the Numerical Electromagnetics Code (NEC) a computer model of half square log-periodic array with dual feed was used to obtain data for plotting radiation patterns and amplitude and phase plots of the element currents for evaluation of the performance of the array. The model was run with a transmission line impedance value of 300 Ohms which had been shown by Johnsen [Ref. 2] to be the optimum. The model was also run with impedance values below and above 300 Ohms verifying 300 Ohms as optimum.

The model was run in free space and over perfect ground with different combinations of switched and unswitched transmission line and in-phase and antiphase feed options. Radiation patterns and amplitude and phase plots of the element currents were used to evaluate the performance of the antenna. Since there is not a Well established method, examination of the radiation patterns was the major tool for determination of the performance of the array. The results can be listed as follows:

* The half square log-periodic array with dual feed shows the characteristics of a successful log-periodic structure. Structure shows a unidirectional "backfire" radiation pattern, radiation being directed towards the small end of the array.
* The structure keeps almost the same performance over the entire design frequency range with small variations. But, between 2 and 5 MHz , there is a performance degradation because of the truncation effect. As the frequency increases performance of the antenna is stabilized and variations get smaller.
* With these design parameters the array gives an average power gain of 5.2 dB . and an average half power beamwidth (HPBW) of 57°
* It can be said that it would be possible to get a more directive radiation pattern and higher gain from the structure using a higher scale factor, but this in turn would require more elements to cover the frequency range making the construction of the array unpractical when considered for military use. With these design parameters, although it is still a big structure, it would not be difficult to construct the array at high levels of command for this frequency.
The most important conclusion which can be drawn from this study is that the half square log-periodic array shows the characteristics of a successful log-periodic
structure. When considered for use at much higher frequencies the dimensions of the elements will be much smaller making it possible to use higher scale factor values for higher gain and directivity.

B. RECOMMENDATIONS

Based on the results of the study, the following recommendations are made :

* This study investigated the half square log-periodic array in free space and over perfect ground. Although, the results show satisfactory performance, a study of the array should be done over lossy ground to see what additional effects occur because of the lossy ground.
* The study was limited by considerations of frequency range and military application. To satisfy these considerations a lower value of scale factor was used in order to make the array practical for the military. Although performance is satisfactory with these design parameters over this frequency range, it should be possible to get better performance at much higher frequencies using higher values of scale factor (since the overall dimensions of the array will be much smaller). Even at the 2 to 30 MHz range, when considered for civilian use at a fixed site, the array can be constructed with more elements for better gain and directivity.
* Following near magnetic field analysis of uniformly periodic half square array by Johnsen [Ref. 2], this thesis formed the second step in study of half square log-periodic array. Johnsen investigated near magnetic fields of uniformly periodic half square array and obtained k- β diagrams. From the k- β diagrams, he identified frequency regions showing backward radiation, suggesting that a log-periodic half square array would support backward radiation. In the absence of a well established theoretical approach for log-periodic antenna design, the method used in this combined study and first suggested by Mayes, Deschamps, and Patton [Ref. 8] has proven to be very successful and less time consuming. It is therefore recommended that before attacking log-periodic structures directly, a near field investigation of the unifornly periodic counterparts may give insight to log-periodic performance. Analysis of k- β diagrams of uniformly periodic structures can provide clues to the performance of log-periodic counterparts. If the study of uniformly periodic structures proves fruitful, it is highly probable that log-periodic counterparts will give good broadband performance. Near field analysis of uniformly periodic counterparts of many successful and unsuccessful structures shows this to be the case.

APPENDIX A

NEC DATA FILE FOR FREE SPACE

APPENDIX B

NEC DATA FILE FOR PERFECT GROUND

2, 2, 1, 1
 $\begin{array}{lllll}3, & 2, & 0,4 \\ 0, & 4 & & & \\ 3, & 1, & 0,1 & 4 \\ 0, & 1, & 361, & 1000, & 60,0,0,1\end{array}$ HORIZO $\begin{array}{lllll}3, & 2, & 0,4 & & \\ 0 & 1, & 361,1000,60,0,0,1 & \text { HORIZONTAL } \\ 3, & 2, & 0,4,4 \\ 0, & 1, & 361,1000,90,0,0,1 & \text { HORIZONTAL }\end{array}$ $\begin{array}{llll}3,2,0,4 \\ 0, & 0, & 361,1000,60,0,0,1 & \text { HORIZONTAL } \\ 3, & 2,4,4 \\ 0,1, & 361,1000,90,0,0,1 & \text { HORIZONTAL }\end{array}$ $3,1,181,1,4$
 , $\frac{1}{2}, 1,1$, $2,2,1,1$
$2, \frac{1}{2}, 1,1$, , $, \frac{1}{2}, 1,1$, $, 1,1,1$ $2,2,1,1,1$ $\begin{array}{lll}2,2,1,1 & \\ 2,2,1,1, & 1 \\ 0,1,1,1, & 1\end{array}$ 2,1,1 2,2,1,1 2, 2, 1, 1 VERTICAL

APPENDIX C RADIATION PATTERNS IN FREE SPACE

Figure C. 1 Horizontal Pattern, Frequency: 2 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : 2.38 MHZ., TL : -300 OHM.

Figure C. 2 Horizontal Pattern, Frequency: 2.38 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : $2.83 \mathrm{MHZ.,TL}:-300$ OHM.

Figure C. 3 Horizontal Pattern, Frequency: 2.83 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : 3.37 MHZ., TL : $\mathbf{- 3 0 0}$ OHM.

Figure C. 4 Horizontal Pattern, Frequency: 3.37 MHz .

HALF SQUARE LOG PERIODIC ARRAY

HORIZONTAL, FREQUENCY : 4.01 MHZ ., TL : -300 OHM.

Figure C. 5 Horizontal Pattern, Frequency: 4.01 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY: 4.78 MHZ., TL : -300 OHM.

Figure C. 6 Horizontal Pattern, Frequency: 4.78 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : 5.69 MHZ., TL : -300 OHM.

Figure C. 7 Horizontal Pattern, Frequency: 5.69 MHz .

HALF SQUARE LOG PERIODIC ARRAY
FREQUENCY : 6.77 MHZ., TL : $\mathbf{- 3 0 0}$ OHM.

Figure C. 3 Horizontal Pattern, Frequency: 6.77 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : 8.06 MHZ., TL : -300 OHM.

Figure C. 9 Horizontal Pattern, Frequency: 8.06 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : $11.43 \mathrm{MHZ} ., \mathrm{TL}:-300 \mathrm{OHM}$.

Figure C. 10 Horizontal Pattern, Frequency: 11.43 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY: 13.61 MHZ ., TL : $\mathbf{- 3 0 0}$ OHM.

Figure C. 11 Horizontal Pattern, Frequency: 13.61 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY: 16.20 MHZ., TL : -300 OHM.

Figure C. 12 Horizontal Pattern, Frequency: 16.20 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : $19.29 \mathrm{MHZ} ., \mathrm{TL}:-300$ OHM.

Figure C. 13 Horizontal Pattern, Frequency: 19.29 M Mz.

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : $22.96 \mathrm{MHZ} .$, TL : -300 OHM .

Figure C. 14 Horizontal Pattern, Frequency: 22.96 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : $27.34 \mathrm{MHZ}$. . TL : -300 OHM .

Figure C. 15 Horizontal Pattern, Frequency: 27.34 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY: 30.0 MHZ ., TL : -300 OHM.

Figure C. 16 Horizontal Pattern, Frequency: 30.0 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY: 2.15 MHZ., TL: -300 OHM.

Figure C. 17 Horizontal Pattern, Frequency: 2.15 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : $2.60 \mathrm{MHZ} .$, TL : -300 OHM.

Figure C. 18 Horizontal Pattern, Frequency: 2.60 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : 3.0 MHZ ., TL : -300 OHM.

Figure C. 19 Horizontal Pattern, Frequency: 3.0 MHz.

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : 3.7 MHZ., TL : -300 OHM.

Figure C. 20 Horizontal Pattern, Frequency: 3.7 MHz.

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : 5.0 MHZ., TL : -300 OHM.

Figure C. 21 Horizontal Pattern, Frequency: 5.0 MIIz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : 5.95 MHZ., TL: -300 OHM.

Figure C. 22 Horizontal Pattern, Frequency: 5.95 . MHz.

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : 6.5 MHZ., TL : -300 OHM.

Figure C. 23 Horizontal Pattern, Frequency: 6.5 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : 7.0 MHZ., TL : -300 OHM.

Figure C. 24 Horizontal Pattern, Frequency: 7.0 MHz.

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY: 7.5 MHZ., TL: -300 OHM.

Figure C. 25 Horizontal Pattern, Frequency: 7.5 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : 8.25 MHZ., TL : -300 OHM.

Figure C. 26 Horizontal Pattern, Frequency: 8.25 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : $8.50 \mathrm{MHZ} ., \mathrm{TL}:-300 \mathrm{OHM}$.

Figure C. 27 Horizontal Pattern, Frequency: 8.5 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : $8.75 \mathrm{MHZ} ., \mathrm{TL}:-300$ OHM.

Figure C. 28 Horizontal Pattern, Frequency: 8.75 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY: 9.0 MHZ., TL: -300 OHM.

Figure C. 29 Horizontal Pattern, Frequency: 9.0 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : 9.25 MHZ., TL : -300 OHM.

Figure C. 30 Horizontal Pattern, Frequency: 9.25 MHz .

HALF SQUARE LOG PERIODIC ARRAY

$$
\text { FREQUENCY : } 9.50 \mathrm{MHZ.,} \mathrm{TL} \mathrm{:}-300 \text { OHM. }
$$

Figure C. 31 Horizontal Pattern, Frequency: 9.5 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : 9.75 MHZ., TL : -300 OHM.

Figure C. 32 Horizontal Pattern, Frequency: 9.75 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : 10.0 MHZ., TL : $\mathbf{- 3 0 0}$ OHM.

Figure C. 33 Horizontal Pattern, Frequency: 10.0 MHz .

HALF SQUARE LOG PERIODIC ARRAY

FREQUENCY : $10.5 \mathrm{MHZ} ., \mathrm{TL}:-300 \mathrm{OHM}$.

Figure C. 34 Horizontal Pattern, Frequency: 10.5 MHz .

HALF SQUARE LOG PERIODIC ARRAY, OPG

FREQUENCY : 2.0 MHZ , TL : -300 OHM .

Pattern gain in obi

180

Figure D. 1 Horizontal Pattern. Frequency: 2 MHz .

HALF SQUARE LOG PERIODIC ARRAY, OPG
FREQUENCY : 2.38 MHZ , TL : -300 OHM .

Figure D. 2 Horizontal Pattern, Frequency: 2.38 MHz .

HALF SQUARE LOG PERIODIC ARRAY, OPG

FREQUENCY : 2.83 MHZ , TL : -300 OHM.

Figure D. 3 Horizontal Pattern, Frequency: 2.83 MHz.

HALF SQUARE LOG PERIODIC ARRAY, OPG

FREQUENCY: 3.37 MHZ, TL : -300 OHM.

Figure D. 4 Horizontal Pattern, Frequency: 3.37 MHz .

HALF SQUARE LOG PERIODIC ARRAY, OPG

FREQUENCY : $4.01 \mathrm{MHZ}, \mathrm{TL}:-300 \mathrm{OHM}$.

Figure D. 5 Horizontal Pattern, Frequency: 4.07 MHz .

HALF SQUARE LOG PERIODIC ARRAY, OPG

FREQUENCY : $4.78 \mathrm{MHZ}, \mathrm{TL}:-300 \mathrm{OHM}$.

Figure D. 6 Horizontal Pattern, Frequency: 4.78 MHz .

HALF SQUARE LOG PERIODIC ARRAY, OPG

FREQUENCY : $5.69 \mathrm{MHZ}, \mathrm{TL}:-300 \mathrm{OHM}$.

Figure D. 7 Horizontal Pattern, Frequency: 5.69 MHz .

HALF SQUARE LOG PERIODIC ARRAY, OPG
FREQUENCY : $6.77 \mathrm{MHZ}, \mathrm{TL}:-300 \mathrm{OHM}$.

Figure D. 8 Horizontal Pattern, Frequency: 6.77 MHz .

HALF SQUARE LOG PERIODIC ARRAY, OPG

FREQUENCY : 8.06 MHZ, TL : $\mathbf{- 3 0 0}$ OHM.

Figure D. 9 Horizontal Pattern, Frequency: 8.06 MHz .

HALF SQUARE LOG PERIODIC ARRAY, OPG
FREQUENCY : 9.60 MHZ, TL : -300 OHM.

Figure D. 10 Horizontal Pattern, Frequency: 9.60 MHz .

HALF SQUARE LOG PERIODIC ARRAY, OPG

FREQUENCY : 11.43 MHZ, TL : -300 OHM.

Figure D. 11 Horizontal Pattern, Frequency: 11.43 MHz .

HALF SQUARE LOG PERIODIC ARRAY, OPG

FREQUENCY : $16.20 \mathrm{MHZ}, \mathrm{TL}:-300 \mathrm{OHM}$.

Figure D. 12 Horizontal Pattern, Frequency: 16.20 MHz .

HALF SQUARE LOG PERIODIC ARRAY, OPG

FREQUENCY : $19.29 \mathrm{MHZ}, \mathrm{TL}:-300$ OHM.

ANGLES IN DEGREES TRUE

Figure D. 13 Horizontal Pattern, Frequency: 19.29 MHz .

HALF SQUARE LOG PERIODIC ARRAY, OPG

FREQUENCY : $22.96 \mathrm{MHZ}, \mathrm{TL}:-300 \mathrm{OHM}$.

Figure D. 14 Horizontal Pattern, Frequency: 22.96 MHz .

HALF SQUARE LOG PERIODIC ARRAY, OPG

FREQUENCY : 27.34 MHZ, TL : -300 OHM.

Figure D. 15 Horizontal Pattern, Frequency: 27.34 MHz .

HALF SQUARE LOG PERIODIC ARRAY, OPG

FREQUENCY: $30.00 \mathrm{MHZ}, \mathrm{TL}: \mathbf{- 3 0 0}$ OHM.

Figure D. 16 Horizontal Pattern, Frequency: 30.0 MHz .

APPENDIX E
 amplitude and phase plots in free space

Figure E. 1 Current Amplitude, Frequency : 2 MHz .

Figure E. 2 Current Phase, Frequency: 2 MHz .

Figure E. 3 Current Amplitude, Frequency : 2.38 MHz .

Figure E. 4 Current Phase, Frequency : 2.38 MHz .

CURRENT AMPLITUDE

Figure E. 5 Current Amplitude, Frequency : 2.83 MHz .

Figure E. 6 Current Phase, Frequency : 2.83 MHz .

CURRENT AMPLITUDE

Figure E. 7 Current Amplitude, Frequency : 3.37 MHz.

PHASE

Figure E. 8 Current Phase, Frequency : 3.37 MHz .

CURRENT AMPLITUDE

Figure E. 9 Current Amplitude, Frequency: 4.01 MIIz.

Figure E. 10 Current Phase, Frequency : 4.01.

CURREN'T AMPLITUDE

Figure E. 11 Current Amplitude, Frequency: 4.78 MIIz.

PHASE

Figure E. 12 Current Phase, Trequency: 4.78 MHz .

CURRENT AMPLITUDE

Figure E. 13 Current Amplitude, Frequency : 5.69 MHz.

PHASE

Figure E. 14 Current Phase, Frequency : 5.69 MHz .

CURRENT AMPLITUDE

Figure E. 15 Current Amplitude, Frequency : 6.77 MHIz .

Figure E. 16 Current Phase, Frequency : 6.77 MHz .

CURRENT AMPLITUDE

Figure E. 17 Current Amplitude, Frequency : 8.06 MHz .

Figure E. 18 Current Phase, Frequency : 8.06 MHz .

CURRENT AMPLITUDE

Figure E. 19 Current Amplitude, Frequency : 9.6 MHz.

PHASE

Figure E. 20 Current Phase, Frequency : 9.6 . MHz .

CURRENT AMPLITUDE

FREQUENCY : 11.43 MHZ.

Figure E. 21 Current Amplitude, Frequency : 11.43 MHz .

PHASE

Figure E. 22 Current Phase, Frequency: 11.43 MHz .

CURREN'T AMPLITUDE

Figure E. 23 Current Amplitude, Frequency : 13.61 MHz .

PHASE

Figure E. 24 Current Phase, Frequency : 13.61 MHz .

CURREMT MMPLITLDE

Figure E. 25 Current Amplitude. Frequency : 16.2 MHz .

Figure E. 26 Current Phase, Frequency : 16.2 . MHz.

CURRENT AMPLITUDE

Figure E. 27 Current Amplitude, Frequency: 19.29 Milz.

Figure E. 28 Current Phase, Frequency : 19.29 Mllz.

CURRENT AMPLITUDE

Figure E. 29 Current Amplitude, Frequency : 22.96 MHz .

PHASE

Figure E. 30 Current Phase, Frequency : 22.96 MHz .

CURRENT AMPLITUDE

Figure E.31 Current Amplitude, Frequency : 27.34 . Mliz.

PHASE

Figure E. 32 Current Phase, Frequency : 27.34 MHz.

CURRENT AMPLITUDE

Figure E. 33 Current Amplitude, Frequency : 30.0 MIIz.

PHASE

Figure E. 34 Current Phase, Frequency : 30.0 MHz .

APPENDIX F
AMPLITUDE AND PHASE PLOTS OVER PERFECT GROUND

CURRENT AMPLITUDE

Figure F. 1 Current Amplitude, Frequency : 2 MHz .

Figure F. 2 Current Phase, Frequency: 2 MHz .

CURRENT AMPLITUDE

Figure F. 3 Current Amplitude, Frequency: 2.38 MHz .

Figure F. 4 Current Phase, Frequency : 2.38 Milz.

CURRENT AMPLITUDE

 FREQUENCY: 2.83 MHZ .

Figure F. 5 Current Amplitude, Frequency : 2.83 MHz .

Figure F. 6 Current Phase, Frequency : 2.83 MHz .

CURRENT AMPLITUDE

Figure F. 7 Current Amplitude, Frequency : 3.37 MHz.

PHASE

Figure F. 8 Current Phase, Frequency: 3.37 MHz .

CURRENT AMPLITUDE

Figure F. 9 Current Amplitude, Frequency: 4.01 MHz .

PHASE

Figure F. 10 Current Phase, Frequency : 4.01.

CURRENT AMPLITUDE

Figure F. 11 Current Amplitude, Frequency : 4.78 MHz .

PHASE

Figure F. 12 Current Phase, Frequency : 4.78 MHz .

CURRENT AMPLITUDE

Figure F. 13 Current Amplitude, 「requency: 5.69 MIIz.

PHASE

Pigure fit Curent Phase. Irequency: 5.69 MHz .

CURRENT AMPLITUDE

Figure F. 15 Current Amplitude, Frequency: 6.77 MIIz.

Figure F. 16 Current Phase, Frequency : 6.77 MHz .

CURRENT AMPLITUDE

Figure F. 17 Current Amplitude, Frequency : 8.06 MHz.

Figure F. 18 Current Phase, Frequency : 8.06 MHz .

CURRENT AMPLITUDE

Figure F. 19 Current Amplitude, Frequency: 9.6 MHz.

PHASE

Figure F. 20 Current Phase, Frequency : 9.6 MHz .

CURRENT AMPLITUDE

Figure F. 21 Current Amplitude, Frequency : 11.43 MH .

Figure F. 22 Current Phase, Frequency : 11.43 MHz.

CURRENT AMPLITUDE

Figure F. 23 Current Amplitude, Frequency : 13.61 MHz .

Figure F. 24 Current Phase, Frequency: 13.61 MHz .

Figure F. 25 Current Amplitude, Frequency : 16.2 MIIz.

PHASE

Figure F. 26 Current Phase, Frequency: 16.2 MHz .

CURRENT AMPLITUDE

Figure F. 27 Current Amplitude, Frequency : 19.29 MHz .

PHASE

Figure F. 28 Current Phase, Frequency: 19.29 Milz.

CURRENT AMPLITUDE

Figure F. 29 Current Amplitude, Frequency : 22.96 WHz.

Figure F. 30 Current Phase, Frequency : 22.96 WHz .

CURRENT AMPLITUDE

Figure F. 31 Current Amplitude, Frequency : 27.34 MHz .

Figure F. 32 Current Phase, Frequency : 27.34 Mllz.

Figure F. 33 Current Amplitude, Frequency: 30.0 MHz .

Figure F. 34 Current Phase, Frequency: 30.0 MHz .

LIST OF REFERENCES

1. Campbell, D.V., and others, A Dual Feed-Dual Polarized Log-Periodic HF Antenna System, paper presented at the 1985 Antenna Applications Symposium, Urbana, Illinois, 18 September 1985.
2. Johnsen, Richard John, An Investigation into the Potential for Developing A Successful Log-Periodic Half Square Antenna with Dual Feed, MSEE Thesis, Naval Postgraduate School, Monterey, California, December 1986.
3. Naval Ocean Systems Center Technical Document 116, volume 2, Numerical Electromagnetics Code (NEC)-Method of Moments, San Diego, California, January 1981.
4. Stutzman, Warren L., and Thiele, Gary A., Antenna Theory and Design, John Wiley and Sons, New York, 1981.
5. Weeks, W.L., Antenna Engineering, McGraw Hill Book Company, New York, 1968.
6. Blake, Lamont V., Antennas, John Wiley \& Sons, New York, 1966.
7. Jordan, E.C., Deschamps, G.A., Dyson, J.D., Mayes, R.E., Developments In Broadband Antennas, IEEE spectrum, v. 1, pp. 58-71, April 1964.
8. Hudock, E., Mayes, P.E., Near-Field Investigation of Uniform Periodic Monopole Arrays, IEEE Transactions on Antennas and Propagation, v. AP-13, pp.840-885, November 1965.
9. Mitra, R., Jones, E.K., How to Use k - β Diagrams in Log-Periodic Antenna Design, MICROWAVES, pp.18-27, June 1965.
10. Greiser J.W., Mayes P.E., The Bent Backfire Zigzag - A Vertically-Polarized Frequency Independent Antenna, IEEE Transactions on Antennas and Propagation, v. AP-12, pp. 281-290, May 1964.
11. Defense Technical Information Center 2 Cameron Station Alexandria, VA 22304-6145
12. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 43943-5002
13. Chairman, Code 62 1
Department of Electrical and Computer Engineering
Naval Postgraduate School Monterey, CA 93943-5000
14. Director, Research Administration, Code 012 1
Naval Postgraduate School
Monterey, CA 93943-5000
15. Hermes Elecs. Ltd. 1
Box 1005
Dartmouth, Nova Scotia
16. Ant. Engrg. Austr. Pty. Ltd. 1
Box 191
Croydon Victoria 3136 Australia
17. Sanders Assoc., Inc. 1
Daniel Weoster Hwy. Nashua, NH 03061
18. Dayton Granger Inc. 1
P.O. Box 14070
Ft. Lauderdale, FL 33302
19. GTE Government Systems 1 100 Fergusen Dr. Mountain View, CA 94042
20. HY-GAIN Telex Coms. Inc. 1
S601 NE Huy. Six
Lincoln, NE 68505
21. CRC,DRC, Bldg 2A, Rm 330 1
3701 Carling Ave, Box 11490
Sta.H, Ottawa, Ontario Canada K2H 8S2
22. R. W. Adler 8
Naval Postgraduate School, Code 62AB
Monterey, CA 93943
23. Richard D. Albus 1
IIT Research Institute 207 Woodloch Ln.
Severna Park, MD 21146
24. J. Ames 1
SRI-G174
333 Ravenswood Ave.
Menlo Park, CA 94025
25. R. Anders 1
Appl. Electromag. Eng.
Vorder Halden 11
D- 7777 Salem 1, West Germany
26. Barker \& Williamson 1
ATTN: SR Antenna DES ENG
10 Canal St.
Bristol, PA 19007
27. Andrew Corp. 1
ATTN: SR Antenna DES ENG 10500 W 153 St .
Orland Pk., IL 60462
28. Electrospace Systems Inc. 1
ATTN: SR Antenna DES ENG
Box 1359
Richardson, TX 75080
29. DHV/Antenna Prod Div 1
ATTN: SR Antenna DES ENG
Box 520
Mineral Wells, TX 76067
30. Foreign Sci. \& Tech. Center 1
ATTN: AIFPM Army Department
220 7th St., λE
Charlottesville, VA 22901-5396
31. Dr. Harold W. Askins, Jr. 1
The Citadel
Department of Electrical Engineering
Charleston, SC 29409
32. Capt. W. P. Averill 1
U.S Naval Academy, Department of Electrical Engineering Annapolis, MD 21402
33. Dr. Duncan C. Baker 1
University of Pretoria
Electrical and Computer Engineering Department 0002 Pretoria, S. Africa
34. Rajaev Bansal 1
University of Connecticut, EECS, U-157
260 Glenbrook Road
Stors, CT 06268
35. R. L. Bell 1
Antenna Products Corp.
101 S.E. 25th Avenue
Mineral Wells, TX 76067
36. John Belrose 1
CRC/DRC, Bldg. 2A, Rm. 330
3701 Carling Ave. Box 11490
STA.H, Ottawa, Ontario, Canada K2H8S2
37. Richard L. Bibey 1
Communications Engineering Service 1
1600 Wilson Blvd. \#1003
Arlington, VA 22209
38. Thomas Birnbaum 1
OAR Corp. Eng. Dept.
10447 Roselle St.
San Diego, CA 92121
39. Comm. Research Center 1
ATTN: Bruce Blevins-DRC
STA.H 3701 Darling Ave. Box 11490
Ottawa, Ontario, Canada
40. Lawrence J. Blum 1
TECH. for COMM. INT'L
1625 Sterlin Road
Mountain View, CA 94043
41. L. Botha 1
NIAST;CSIR
P.O. Box 395
Pretoria, Rep. S.Africa 0001
42. Mr. Edwin Bramel 1
P.O. Box 722
Ft. Huachuca, AZ 85613
43. J. K. Breakall 1
Lawrence Livermore National Lab.
P.O. Box 5504, L-156
Livermore, CA 94550
44. G. Burke 1Lawrence Livermore National Lab.
P.O. Box 5504, L-156Livermore, CA 94550
45. J. Cahill 1
Shakespeare, ELEC\&FIB DIV.
P.O. Box 733
Newberry, SC 29108
46. TRW Mil. Elex. Div. 1
ATTN: Donn Campbell
RC2/266 7X
San Diego, CA 92128
47. Mr. Brent Campbell 1
ECAC, MS 21
North Severn Naval Base
Annapolis, MD 21401
48. Al Christman 1
Ohio Liniversity
Stocker Center
Athens, OH 45701
49. Dawson Coblin 1
Lockheed M \& S Co.
0,6242; B/130, Box 3504
Sunnyvale, CA 94088-3504
50. Lee W. Corrington 1
Commander USAISEIC
ATTN: ASBI-STS
Ft. Huachuca, AZ 85613-7300
51. R. Corry I
Commander LSAISEIC/ASBI-STS
Ft. Huachuca, AZ 85613-7300
52. Roger A. Cox 1
TELEX Communications Inc.
8601 Northeast Hwy 6
Lincoln, NE 68505
53. Pete Cunnigham 1
US AR.MY CECOM
ATTN: AMSEL-RD-COM-TA-1
Ft. Monmouth, NJ 07703
54. N. J. Damakos 1P.O. Box 469Concordville, PA 19331
55. Robert P. Eckert 1Fed. Comm. Com.
2025 M Street, NW
Washington DC 20554
56. Wayne A. Essig 1
Naval Electronic Systems Com.
Code 51012
Washington D.C. 20360
57. Robert Everett 1
VOA/ESBA
601 D Street, NW
Washington D.C. 20547
58. Michael F. Evers 1
MFE Associates, Inc. 10403 Courthouse Dr.
Fairfax, VA 22030
59. Dave Faust 1
Eyring Research Institute 1455 W 820 N
Provo, UT 84601
60. Jerry Ferguson 1
Naval Ocean Systems Center
271 Catalina Blvd.
San Diego. CA 92151-5000
61. D. Fessenden 1
Naval Underwater Systems Center
New London Laboratory
New London, CT 06320
62. Mr. Richard G. Fitzgerrell 1
US Department of Commerce OT:ITS
Boulder, CO 80302
63. Matthew Folkert 1
Radio Free Europe 1201 Conn Ave. NW, 405
Washington D.C. 20036
64. Paul Dean Ford 1
RR 12 Box 379
W. Terre Haute, IN 47885
65. Paul Gailey 1
The EC Corporation
575 Oak Ridge Turnpike
Oak Ridge, TN 37830
66. R. D. Gehring 1
137-124 Collins Rockwell
350 Collins Road NE
Cedar Rapids, IA 52498
67. S. Goodall 1
USA/CECOM/NET RADIO DIV.
Ft. Monmouth, NJ 07703
68. G.H Hagn 1
SRI International
1611 N. Kent Street
Arlington, VA 22209
69. R. C. Hansen 1
Box 215
Tarzana, CA 91336
70. Lawrence Harnish 1
SRI International
1611 N. Kent Strect
Arlington, VA 22209
71. J. B. Hatfield 1
Hatfield \& Dawson
4266 Sixth Ave., N.W. Seattle, WA 98107
72. Jackie Ervin Hipp 1
S W Research Institute/EMA
P.O. Drawer 28510
San Antonio, TX 78284
73. H. Hochman'MS 4G12 1
GTE Sylvania
Box 7198
Mountain View, CA 94039
74. R.T. Hoverter 1
L.S. Army CECO.M
A.MSEL-COM-RN-R
Ft. Monmouth, NJ 07703
75. Fred Hubler 1
Rockwell International 885 35th Street NE
Cedar Rapids, IA 52498
76. D. E. Hudson1
Lockheed Aircraft Ser. Co. Dept.1-330
P.O. Box 33
Ontario, CA 91761
77. Dwight Isbell 1
Boeing Co.
Box 3999, Mail Stop 47-35
Seattle, WA 98124
78. DELHD-N-EMA/ K. Coburn 1
Harry Diamond Lab. 2800 Powder Mill Rd. Adelphi, MD 20783
79. S. W. Kershner 1
Kershner \& Wright
5730 Gen. Washington Dr.
Alexandria, VA 22312
80. H. Kobayashi 1
Department of Commerce
179 Admiral Cochrane Dr.
Annapolis, MD 21401
81. Jim Lily 1
Litton/Amecon
5115 Calvert Rd.
College Park, MD 20740
82. Mr. Jim Logan 1
․OSC Code 822 (T)
271 Catalina Blvd.
San Diego, CA 92152
83. Janet McDonald 1
Commander USAISEIC/ASBI-STS Ft. Huachuca, AZ 85613-7300
84. B. John Meloy 1
333 Ravenswood;Bldg. G Menlo Park, CA 94025
85. E. K. Miller 1
Rockwell Science Center
Box 1085
Thousand Oaks, CA 91365
86. Dr. James Mink/DRXRO-EL 1
U.S. Army Research Office P.O. Box 12211
Research Tri Pk. NC 27709
87. Lowell C. Minor
IIT Research Institute / ECAC 185 Admiral Cohrane Dr.
Annapolis, MD 21401
88. I. C. Olson 1
NOSC Code 822 (T)
271 Catalina Blvd.
San Diego, CA 92152
89. Martin L. Perrine 1
DOD-Radio Science Division 9800 Savage Road
Ft. George G. Meade, MD 20755
90. David J. Pinion 1
1215 S. Alfred Street
Los Angeles, CA 90035
91. Jim Cahill 1
Kershner, Wright \& Hagaman
5730 Gen. Washington Dr.
Alexandria, VA 22312
92. J.J. Reaves, Jr. 1
NAVAL ELEC. SYS. ENG. CNTR.
4600 Marriot Drive
N. Charleston, SC 29413
93. Alfred Resnick 1
Capital Cities / ABC Radio 1345 Avenue of Americas / 27F New York, NY 10105
94. R. B. Riegel 1
\therefore SA
8806 Crandall Rd.
Lanham, MD 20801
95. T. Rouch 1
Microcube Corp.
Box 488
Leesburg, VA 22075
96. Joseph R. Romanosky 1
National Security Agency
R632 Electronic Engincer
Ft. Meade, MD 20755
97. R. Royce 1
Naval Research Lab
Washington D.C. 20375
98. G. M. Royer 1
CO.MM. Research Center
P.O. Box 11490
STN. H Ottawa, Ontario, Canada K2H8S2
99. D. Rucker 1
ESL
495 Java Drive, MS205
Sunnyvale, CA 94086
100. W. B. Seabrecze 1
202 Fletcher Rd.
Sterling, VA 22170
101. Ed Shea 1
CIA / DIR of COMM
Washington D.C. 20505
102. Kenneth Siarkiewicz 1
Rome Air Development Center, Code RBCT Griffiss AFB, NY 13441
103. T. Simpson 1
University os S. Carolina
College of Engineering
Columbia, SC 29208
104. W. D. Stuart 1
IIT Research Institute
185 Admiral Cochrane Dr.
Annapolis, MD 21402
105. R. Tanner 1
TechnologyCom. Int'l
1625 Stierlin Rd.
Mountain View, CA 94043
106. Richard Tell 1
LSEPA ORP
P.O.Box 18416
Las Vegas, NV 89114
107. Ric Thowless 1
入OSC Code 822 (T)
271 Catalina Blvd.
San Diego, CA 92152
108. Don Uffelman 1
MITRE, C3I Division
7525 Colshire Dr., MS 7405
McLean, VA 22102
109. C. H. Vandament 1
Rockwell International
802 Brentwood
Richardson, TX 75080
110. Dr. Ed Villaseca 1
Hughes Aircraft Co./ GD SYS
Fullerton, CA 92634
111. W. Perry Wheless Jr. 1
P.O. Box 3 CL
Las Cruces, NM 88003
112. TCI 1
ATTN: Dick Wray 1625 Stierlin Road
Mountain View, CA 94043
113. Mustafa Erdeviren 2
Kizlarpinari, Batman Sok, Bahar Apt. 5/4
Kecioren, Ankara, Turkey
114. K.K.K. ARGE Bsk.ligi 1
Bakanliklar, Ankara, Turkey
115. K.K.K Egitim K.ligi 1
Bakanliklar, Ankara, Turkey
116. Kara Harp Okulu K.ligi 1
Bakanliklar, Ankara, Turkey
117. Baily Aalfs 1
Sabre Comm. Corp.
P.O. Box 536
Sioux City, IO 51102

Thesis
E1 E5662
Erdeviren
c. 1

A computer model investigation of a square logperiodic array.

22 APR 98
36851

Thesis
E56625 Erdeviren
c. 1 A computer modei investigation of a square logperiodic array.

